Methodological Considerations for Hair Cortisol Measurements in Children

Radomir Slominski, MD,* Cynthia R. Rovnaghi, MS,* and Kanwaljeet J. S. Anand, MBBS, DPhil*†

Background: Hair cortisol levels are used increasingly as a measure for chronic stress in young children. We propose modifications to the current methods used for hair cortisol analysis to more accurately determine reference ranges for hair cortisol across different populations and age groups.

Methods: The authors compared standard (finely cutting hair) versus milled methods for hair processing (n = 16), developed a 4-step extraction process for hair protein and cortisol (n = 16), and compared liquid chromatography–mass spectrometry (LC-MS) versus enzyme-linked immunosorbent assays (ELISAs) for measuring hair cortisol (n = 28). The extraction process included sequential incubations in methanol and acetone, repeated twice. Hair protein was measured through spectrophotometric ratios at 260/280 nm to indicate the hair dissolution state using a BioTek plate reader and dedicated software. Hair cortisol was measured using an ELISA assay kit. Individual (n = 13), pooled hair samples (n = 12) with high, intermediate, and low cortisol values, and the ELISA assay internal standards (n = 3) were also evaluated by LC-MS.

Results: Milled and standard methods showed highly correlated hair cortisol (r = 0.951, P < 0.0001) and protein values (r = 0.902, P = 0.0002), although higher yields of cortisol and protein were obtained from the standard method in 13 of 16 and 14 of 16 samples, respectively (P < 0.05). Four sequential extractions yielded additional amounts of protein (36.5%, 27.5%, 30.5%, 3.1%) and cortisol (45.4%, 31.1%, 15.1%, 0.04%) from hair samples. Cortisol values measured by LC-MS and ELISA were correlated (r = 0.737; P < 0.0001), although cortisol levels [median (interquartile range)] detected in the same samples by LC-MS [38.7 (14.4–136) ng/mL] were lower than that by ELISA [172.2 (67.9–1051) ng/mL]. LC-MS also detected cortisone, which comprised of 13.4% (3.7%–25.9%) of the steroids detected.

Conclusions: Methodological studies suggest that finely cutting hair with sequential incubations in methanol and acetone, repeated twice, extracts greater yields of cortisol than does milled hair. Based on these findings, at least 3 incubations may be required to extract most of the cortisol in human hair samples. In addition, ELISA-based assays showed greater sensitivity for measuring hair cortisol levels than LC-MS–based assays.

Key Words: stress, chronic stress, ELISA assays, protein extraction

Ther Drug Monit 2015;37:812–820

INTRODUCTION

Established “gold standard” methods for measuring acute stress are used widely, although there is a paucity of methods for measuring chronic stress.1 Measurements of cortisol from different biological sources (blood, saliva, urine) provide a measure of acute cortisol production, and thus may not reliably reflect chronic stress.2,3 However, hair cortisol is a good candidate for measuring chronic stress because the hair shaft grows at rates of 256 ± 44 μm/d in African Americans and 396 ± 55 μm/d in white people, averaging at rates of around 1 cm/mo.4,5 Hair cortisol levels were originally measured in the hair of athletes thought to be abusing anabolic steroids and were later studied among humans and primates as a measure for chronic stress.6,7 Multiple studies showed positive correlation between subjective stress and hair cortisol levels,8,9 further corroborated with serum and saliva cortisol in elementary school girls.9 In earlier studies, a liquid chromatography–mass spectrometry (LC-MS) analysis was used more commonly to measure hair cortisol levels,10,11 however, since 2007, enzyme-linked immunosorbent assays (ELISAs)12 have been widely used for measuring hair cortisol.13

Relatively few studies have examined hair cortisol as a marker for chronic stress in pediatric patients. Yamada et al14 first reported hair cortisol levels in newborns receiving neonatal intensive care, showing that those requiring mechanical ventilation had higher hair cortisol levels than nonventilated term infants. Palmer et al15 found significantly higher hair cortisol levels in African American infants compared with white infants at 1 year of age, correlated with measures of prenatal adversity, maternal postpartum depression, parenting stress, and the child’s socio-emotional development at age 1 year. Among preschool children, hair cortisol levels were negatively correlated with the parent’s educational level, but not parental income.16 Longitudinal studies found a natural decrease in hair cortisol levels with increasing age from 1 to 8 years.17
years. Groneveld et al reported that hair cortisol levels increased in children after starting school, with greater increases among the children who were fearful before starting school.

Despite these studies, the reported analytical methods and hair cortisol values vary significantly between laboratories. Thus, it is difficult to develop normative values for children across different ages or investigate hypotheses with long-term developmental effects. Factors that can influence hair cortisol levels include preterm birth and nutritional status in addition to the frequency of hair washing, use of emollients and creams (which may contain steroids), race, socioeconomic status, and biological characteristics of the hair collected.

We present 3 methodological variations in the ELISA-based measurement of hair cortisol. Specifically, our aims were to (1) compare hair cortisol and protein levels between finely cutting (standard) and milled methods for hair preparation (n = 16), (2) investigate the fractions of hair protein and hair cortisol extracted by alternating incubations in methanol and acetone, and (3) compare hair cortisol levels between ELISA and LC-MS testing methods (n = 28). We postulated that there would be no differences in the hair cortisol extracted and levels measured by these methodological variations. Hair cortisol data based on a single extraction may measure partial cortisol content. Although each laboratory can establish reference ranges based on populations they serve, however, similar amounts of cortisol may not be extracted from each sample because of differences between individual hair samples (such as hair texture, color, culturally dependent cleaning practices, or other factors). Extracting all the cortisol content from each hair sample will generate more precise values, quantitative reference ranges, and may reveal the hair-related factors that lead to cortisol differences between hair samples. Previously used methods using a single extraction have greater time economy but cannot guarantee accuracy. A lack of consistency in hair cortisol data from different laboratories using single extraction methods contributes to greater variability and inconsistency in the reported reference ranges, an inability to perform quantitative meta-analyses, or to examine age-related changes.

MATERIALS AND METHODS

Testing Strategy

Analyses were conducted to test our hypotheses on 2 sets of samples. First, 16 hair samples from individual children were used to compare standard versus milled methods for hair preparation and cortisol/protein extraction. The standard method involves finely cutting the hair to a powder consistency and the milled method includes mechanically grinding the hair into powder. Protein and cortisol levels were detected in the reconstituted residue from each sample. Second, the ELISA versus LC-MS testing methods were compared for measuring hair cortisol in 28 samples, obtained from individual subjects (n = 13), internal controls from the ELISA kit (n = 3), and pooled hair samples (n = 12) derived from the low, intermediate, or high ranges of cortisol levels (4 pooled samples from each range). Pooled samples, a common approach for assay validation with limited sample volumes, contained the hair residue extracts from 20 different subjects (remaining after the ELISA assay) that were combined for specific age groups if their cortisol values were within the low, intermediate, or high ranges defined a priori.

Human Subjects

After approval from the University of Tennessee Health Science Center’s Institutional Review Board, hair samples were obtained from children enrolled in the Conditions Affecting Neurocognitive Development and Learning in Early childhood (CANDLE) study. This includes children residing in the urban and suburban areas of Shelby County, TN, born to women between 16 and 40 years of age enrolled during the second trimester of pregnancy. To obtain a healthy child cohort, maternal exclusion criteria included existing chronic maternal disease of any kind (such as hypertension, diabetes, sickle cell disease etc.) and known pregnancy complications (such as pre-eclampsia, placenta previa, oligohydramnios). More detailed descriptions of the CANDLE cohort and race distribution were published earlier. Informed consent was given by the mothers or by their legally authorized representatives. Characteristics of the study participants used for hair cortisol analyses are listed in Table 1.

Collection of Hair

Hair samples were cut as close to the scalp as possible from the posterior vertex of children (1–3 cm length), taped at the cut end, weighed in an analytical balance (Mettler–Toledo scale AL54, Greifensee, Switzerland), sealed in plastic bags and stored at room temperature (RT) until analysis. Only hair samples weighing 100 mg or more were used for the standard versus milled comparisons. Each of 16 hair samples were divided into 2 equal parts with 50 mg reserved for each method.

<table>
<thead>
<tr>
<th>Age groups, mo</th>
<th>Standard Versus Milled Methods, n (%)</th>
<th>ELISA Versus LC-MS Methods, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12–17</td>
<td>—</td>
<td>3 (23.1)</td>
</tr>
<tr>
<td>24–27</td>
<td>3 (19)</td>
<td>3 (23.1)</td>
</tr>
<tr>
<td>36–40</td>
<td>5 (31)</td>
<td>4 (30.7)</td>
</tr>
<tr>
<td>48–64</td>
<td>8 (50)</td>
<td>3 (23.1)</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>3 (19)</td>
<td>8 (61.5)</td>
</tr>
<tr>
<td>Females</td>
<td>13 (81)</td>
<td>5 (38.5)</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
</tr>
<tr>
<td>African Americans</td>
<td>9 (56)</td>
<td>6 (46.2)</td>
</tr>
<tr>
<td>Whites</td>
<td>7 (44)</td>
<td>7 (53.8)</td>
</tr>
<tr>
<td>Health Insurance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medicaid/TennCare</td>
<td>7 (44)</td>
<td>7 (53.8)</td>
</tr>
<tr>
<td>Other (private, employer, military, none)</td>
<td>9 (56)</td>
<td>6 (46.2)</td>
</tr>
</tbody>
</table>

*Data for individual hair samples only (N = 13).
Preparation of Hair

Standard Method

Preweighed hair was finely cut into a powder consistency using scissors (ROBOZ RS-5853; Gaithersburg, MD), then 4 successive extractions were performed on each hair sample (n = 16): hair was extracted alternating 1 mL of methanol incubated at 52°C for 15 hours, rotated at 200 rpm followed by 1 mL of acetone rotated at 200 rpm for 5 minutes at RT. These extraction steps were repeated twice, and the supernatants for each individual subject were pooled. Pooled supernatants from each sample were kept in an explosion-proof refrigerator (4°C) for air evaporation. The completely dried residue was reconstituted in phosphate-buffered saline (PBS) according to the hair weight and fraction (PBS of 1 mL for 40 mg). Each of the 4 extracts was centrifuged at 10,000 rpm for 50 min, and the supernatants were not pooled but collected in separate glass vials; hair protein and cortisol were measured separately in each of these 4 fractions. As with the standard method, supernatants from the milled samples were air evaporated at 4°C and the dried residues were reconstituted in PBS according to the hair weight and fraction (fraction 1 in 150 μL, fractions 2, 3, and 4 in 67 μL each; total of 350 μL for 50 mg hair).

Milled Method

Hair samples from the same subjects (n = 16) were precut to approximately 0.5 cm, milled at 20,000 rpm with 0.2 mm zirconium beads for 10 minutes using a Bullet Blender (Next Advance Inc, Averill Park, NY), followed by the same 4-step extraction process as described above. Each of the 4 extracts was centrifuged at 10,000 rpm for 10 minutes, and supernatants were not pooled but collected in separate glass vials; hair protein and cortisol were measured separately in each of these 4 fractions. As with the standard method, supernatants from the milled samples were air evaporated at 4°C and the dried residues were reconstituted in PBS according to the hair weight and fraction (fraction 1 in 150 μL, fractions 2, 3, and 4 in 67 μL each; total of 350 μL for 50 mg hair).

Protein and Cortisol Quantification

Measurements of the protein levels extracted from hair indicate the hair dissolution state for the release of cortisol. Therefore, total protein yield (mcg/mL) of supernatants isolated using the standard method was compared with the total protein levels from the milled method fractions. The Epoch BioTek plate reader with Nanodrop attachment was used to read protein concentrations by calculating the ratio of spectrophotometric absorption at 260 and 280 nm. A standard curve (ng/mL) was generated for each plate, and cortisol was measured using the Take 3, Gen5 2.05 program (BioTek plate reader software, Winooski, VT) for calculating protein concentrations (mcg/mL).

Total cortisol yield of standard method supernatants was compared with the individual and total cortisol levels from the milled samples. Hair cortisol was quantified with a saliva cortisol ELISA assay kit (ALPCO Diagnostics, Salem, NH), according to the manufacturer’s instructions. The Epoch BioTek plate reader (BioTek Instruments, Winooski, VT) was used to quantify samples against a generated standard curve (ng/mL). Our intraassay and interassay coefficients of variation were 6% and 7%, respectively.

Mass Spectroscopy

A representative set of 28 samples was sent to the Wisconsin National Primate Center (University of Wisconsin, Madison) for confirmation of cortisol expression and evaluation of the presence of cortisone by LC-MS, as reported previously. The antibody in the ELISA cortisol kit (ALPCO Diagnostics, Inc) reports a cross-reactivity of 6.2% with cortisone; thus, it was important to determine if the levels of detected cortisol may have been influenced by cortisone cross-reactivity. We evaluated hair cortisone because our goal was to establish accurate reference intervals of hair cortisol content for the age groups and ethnicities of the CANDLE subjects. All samples were first evaluated using the ELISA assay before evaluation by LC-MS. The sample set included 13 individual hair samples, 3 positive controls from the ELISA kit at high (100 ng/mL), intermediate (47.4 ng/mL, quality control-1), and low (11.7 ng/mL, quality control-2) concentrations, and 12 pooled hair samples (each consisting of 20 individual samples with known cortisol ranges per pool; Table 1). Technicians at the Wisconsin National Primate Center were blinded to the sample type and reported cortisol and cortisone levels in ng/mL of the reconstituted hair extracts.

Statistical Analyses

GraphPad Prism version 6.0d (GraphPad Software, La Jolla, CA) was used to perform descriptive statistics, Bland–Altman plots, and Spearman rank correlations (r_s). Nonparametric tests were used because the values for hair protein and hair cortisol did not satisfy the conditions of a normal distribution. Measurements of each milled hair fraction (1–4) were calculated for the percentage of protein and cortisol obtained from that fraction, compared with the total amounts obtained from the standard assay of the same hair sample. Percent differences between the standard versus milled method were plotted for paired cortisol and protein levels using the following formula: [(standard value – milled value) / standard value] × 100. Similarly, the formula for the percent differences between the ELISA and LC-MS measures of cortisol

TABLE 2. Percent of Protein and Cortisol Content Extracted in Each Fraction

<table>
<thead>
<tr>
<th>Fraction</th>
<th>Protein (n = 16)</th>
<th>Cortisol (n = 16)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean (SD)</td>
<td>Median (IQR)</td>
</tr>
<tr>
<td>Fraction 1</td>
<td>38.7 (11.6)</td>
<td>36.5 (32.5–40.0)</td>
</tr>
<tr>
<td>Fraction 2</td>
<td>26.0 (7.6)</td>
<td>27.5 (21.7–31.4)</td>
</tr>
<tr>
<td>Fraction 3</td>
<td>32.0 (13.3)</td>
<td>30.5 (25.5–36.9)</td>
</tr>
<tr>
<td>Fraction 4</td>
<td>3.3 (1.6)</td>
<td>3.1 (2.5–5.3)</td>
</tr>
</tbody>
</table>

IQR, interquartile range.
content was as follows: \([\text{ELISA value} - \text{LC-MS value}] / \text{ELISA value} \times 100\). Levels of cortisol and cortisone detected by LC-MS in each sample were totaled to calculate the percentage of cortisone measured in each sample, and descriptive statistics were obtained from these data.

Spearman rank correlations \((r_s)\) with 99% confidence intervals were used to assess the relationships between hair protein and hair cortisol levels and between the ELISA and LC-MS methods for measuring hair cortisol content. Bland–Altman plots with 95% limits of agreement were used to compare the standard (S) versus milled (M) methods and the ELISA versus LC-MS testing methods for cortisol detection and to determine the mean bias from differences between the values measured by these 2 methods. Narrow limits (ie, small biases) would indicate that the 2 methods used for detection of cortisol levels were equivalent. The level of significance was set at \(P < 0.05\).

RESULTS

The percentages of cortisol and protein levels extracted by each step (Fractions 1–4) of the milled extraction in 16 hair samples are listed in Table 2. Highly significant correlations occurred between the standard and milled methods measuring hair cortisol (in ng/mL) and protein (in mcg/mL) content (Table 3). Higher cortisol yields occurred from the standard (103 ± 98 ng/mL) versus milled (68 ± 94 ng/mL, \(P = 0.0453\)) methods in 13 of 16 samples and higher protein yields occurred from the standard (5.98 ± 5.54 mg/mL) versus milled methods (4.36 ± 4.41 mg/mL, \(P = 0.0387\)) in 14 of 16 samples (Fig. 1). The Bland–Altman bias (mean ± SD) is reported, and plots were used to assess the level of agreement between the standard and milled methods for both cortisol (Fig. 2; bias = 78 ± 77) and protein (Fig. 3; bias = 35.2 ± 31.8). Between the 2 methods, the mean differences in cortisol values were 34.4 ± 63.0 ng/mL and in protein values were 1.62 ± 2.86 mcg/mL, with the standard method yielding higher values compared with the milled method.

DISCUSSION

Identifying hair cortisol as a putative marker for chronic stress has led to several different laboratories measuring and reporting cortisol values from hair samples in children. A single-phase extraction procedure is commonly performed to capture hair cortisol content for quantification (Table 4). Our data suggest that repeated extractions with methanol and acetone are required to maximize the extraction of cortisol and protein from human hair. White patients’ hair and Asian hair mostly contain protein, whereas African hair contains significant amounts of lipid moieties as well. Methanol extraction denatures the protein by breaking noncovalent bonds, thus allowing release of hair cortisol. When heated to 52°C in methanol, African hair forms clumps, thus not allowing cortisol to be released into the supernatant. Acetone solubilizes the lipids in these hair clumps, by breaking annular and nonannular lipid–protein bonds. Hair dissolution is simply a marker for the amounts of cortisol released from the hair sample. A 5-minute acetone wash is the minimum time required to dissociate the hair and prevent further clumping while also ensuring that acetone does not overdry the precipitated protein. Alternating between methanol and acetone exposures improves the effectiveness of these chemical processes. Acetone also dissolves the lipid/protein film on the inner surface of the glass vial, speeds the evaporation time of the supernatant, and increases the yield of residue to be solubilized in PBS.

FIGURE 1. Percent differences of protein and cortisol values per subject between standard versus milled methods (calculated using the following formula: \([\text{standard value} - \text{milled value}] / \text{standard value} \times 100\) suggest that percent differences of hair protein and cortisol between the standard and milled methods both occurred in the same direction.

TABLE 3. Correlation of Protein and Cortisol Values From Standard (S) Versus Milled (M) Methods

<table>
<thead>
<tr>
<th></th>
<th>M-Protein</th>
<th>M-Cortisol</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(r_s)</td>
<td>(P)</td>
</tr>
<tr>
<td>M-Protein</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>M-Cortisol</td>
<td>0.699</td>
<td>0.0142</td>
</tr>
<tr>
<td>S-Protein</td>
<td>0.902</td>
<td>0.0002</td>
</tr>
<tr>
<td>S-Cortisol</td>
<td>0.755</td>
<td>0.0062</td>
</tr>
</tbody>
</table>

\(^*\)Indicates Spearman correlation.
Further, we found that milling or grinding the hair does not extract more cortisol than finely cutting the hair and that ELISA-based assays yielded higher cortisol values compared with LC-MS, despite greater analytical specificity of the latter method. Before hair cortisol levels can be used as a biomarker for hypothalamic-pituitary-adrenal axis development or chronic stress in early childhood, methodological considerations must be applied to ensure the accuracy and reproducibility of the reported data.

Despite meticulous transfers of the supernatant, the milling process may lead to the sample escaping from the sealed tubes, or the pitting, scratching, and plastic folding or rippling in the tube caused by zirconium beads may prevent exposure of hair particles to the methanol/aceton. Chemical degradation of hair protein and/or steroids may also occur during the milling process. These results imply that the standard method of finely cutting the hair in glass vials is more effective for extraction of protein and cortisol than the milled method. In previous pilot studies (unpublished data, Cynthia R. Rovnaghi, MS, October 2012) conducted within our laboratory, we continued hair sample extractions and analyzed each fraction until a zero level of detection for cortisol was reached, which typically occurred in fraction 3 or 4. Pilot studies showed that fraction 5 or 6 (using additional acetone incubations for 5 minutes at RT) yielded <5 mcg/mL of protein in fraction 5 and none in fraction 6 and yielded no detectable levels of cortisol.

Hair dissolution in other laboratories occurs by incubating hair in methanol at varying temperatures (RT or 52°C), although multiple variations in the methods for extraction and detection have been reported (Table 4). Our data suggest that a single methanol extraction may yield on average 46.1% of cortisol or 38.7% of protein content. Many laboratories fail to adjust for inherent differences of protein/lipid bonding between different ethnicities that may contribute to the varying ratios of cortisol extraction in single-phase extractions. A 4-step process to extract protein and cortisol from hair, modeled after standard methods for tissue protein/RNA extraction, results in higher cumulative extraction of protein and cortisol (98%–100%), arguably leading to more accurate readings for total hair cortisol content. Increasing the accuracy of extraction and analysis methods for cortisol levels in hair is most important before we can establish reference ranges for hair cortisol in children.

Other researchers have also compared ELISA and LC-MS–based methods for measuring hair cortisol levels.
<table>
<thead>
<tr>
<th>Author Name(s)</th>
<th>Year</th>
<th>Journal Name</th>
<th>Extraction Method</th>
<th>Purification Method</th>
<th>Detection Method</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Russell et al</td>
<td>2014</td>
<td>Ther Drug Monit</td>
<td>Washing: isopropanol 2–3 times, 3 min; Dresden, Colorado, and Western; NW: Erasmus</td>
<td>NA</td>
<td>ELISA: Western: (Alpco Salem, NH), Colorado (Salimetric, PA), Erasmus: (DRG Instruments GmbH, Marburg, Germany)</td>
<td>Method comparison: 4 laboratories Unit: ng/g Subjects: human hair: Dresden, Western, Erasmus; vervet monkey: Colorado</td>
</tr>
<tr>
<td>Noppe et al</td>
<td>2014</td>
<td>Horm Res Paediatr</td>
<td>Extraction: All groups-MeOH NW; CH, 25–40 mg; MeOH 16 hr, 52°C; evap, 37°C, N₂; 250 µL PBS</td>
<td>NA</td>
<td>ELISA: range, 2–80 ng/mL (DRG Instruments GmbH, Marburg, Germany)</td>
<td>Unit: pg/mg Subjects: children Age: 4–14 yrs Sex: mixed Race: white</td>
</tr>
<tr>
<td>Simmons et al</td>
<td>2014</td>
<td>BMC Peds</td>
<td>Isopropanol wash, 3 min, 2-3 times; MH, 50 mg; MeOH, 24 hr, 25°C; evap, 37°C N₂; 4 mL PBS</td>
<td>NA</td>
<td>ELISA: range, 0.012–3.000 mcg/dL (Salimetric, PA)</td>
<td>Unit: not reported Subjects: children Age: mean = 9.51 yrs Sex: mixed Race: not reported</td>
</tr>
<tr>
<td>Steude et al</td>
<td>2013</td>
<td>Biol Psychiatry</td>
<td>Isopropanol wash; MH, 10 mg; MeOH 18 hr, 45°C; evap conditions not reported; 250 µL ddH₂O</td>
<td>NA</td>
<td>LC-MS</td>
<td></td>
</tr>
<tr>
<td>Palmer et al</td>
<td>2013</td>
<td>J Peds</td>
<td>NW; CH, 5–50 mg; MeOH, 52°C, overnight (2-3 times); air evap 4°C; PBS (150 µL/10 mg)</td>
<td>NA</td>
<td>ELISA: range, 0–100 ng/mL (Alpco Diagnostics, Salem, NH)</td>
<td>Unit: ng/mg Subjects: Children Age: 1 yr Sex: mixed Race: African and white</td>
</tr>
<tr>
<td>Grunau et al</td>
<td>2013</td>
<td>PLOS One</td>
<td>Isopropanol wash (twice); CH, 10–15 mg; MeOH, 16 hr, 50°C; evap, hot plate N₂; 250 µL PBS</td>
<td>NA</td>
<td>ELISA: range, 0–100 ng/mL (Alpco Salem, NH)</td>
<td>Unit: pg/mg Subjects: Children Age: mean = 7.8 yrs Sex: mixed Race: white and Asian</td>
</tr>
<tr>
<td>Hinkelmann et al</td>
<td>2013</td>
<td>Biol Psychiatry</td>
<td>Isopropanol wash; 10 mg hair; MeOH, 18 hr, 45°C; 250 µL ddH₂O</td>
<td>NA</td>
<td>LC-MS</td>
<td></td>
</tr>
<tr>
<td>Karlen et al</td>
<td>2013</td>
<td>Peds</td>
<td>NW; MH, at least >5 mg hair; N₂ frozen; MeOH overnight, 25°C (once); evap, vac; 150 µL 0.1 mol/L PBS, 0.02% BS</td>
<td>NA</td>
<td>RIA</td>
<td></td>
</tr>
<tr>
<td>Vaghri et al</td>
<td>2013</td>
<td>Psycho-neuroendocrino</td>
<td>Isopropanol wash (twice); MH, 30 mg hair; MeOH 24 hr, 25°C (twice); evap, air dried; ELISA kit dil</td>
<td>NA</td>
<td>ELISA: range, 0.012–3.000 mcg/dL (Salimetric, PA)</td>
<td>Unit: ng/mg Subjects: children Age: 4–6 yrs Sex: mixed Race: mixed</td>
</tr>
</tbody>
</table>

(continued on next page)
from humans and primates. In a round robin analysis, 4 different laboratories used specific ELISA-based assays and found high correlations in the measured cortisol values ($R^2 = 0.91–0.98$; all $P < 0.0001$). The cortisol values measured by LC-MS in 2 laboratories also showed high correlation ($R^2 = 0.9829$, $P < 0.0001$), whereas the ELISA and LC-MS values showed lower correlations ($R^2 = 0.89–0.98$, $P < 0.0001$). Similar to our findings, the round robin reported greater sensitivity in ELISA-based assays than LC-MS methods. Pooled hair samples from our study showed greater correlation between the 2 testing methods ($r = 0.972$, $P < 0.0001$), whereas individual hair samples showed moderate correlation across the 2 methods ($r = 0.665$, $P = 0.016$). We hypothesize that variable rates of degradation may be associated with the protein content in the reconstituted hair extract. Indeed other laboratories have found that adding protein in their reconstitution cocktail favors cortisol detection (Table 4, protein added as bovine serum albumin). Thus, hair samples with higher protein content, irrelevant of the cortisol level, may have a slower decay rate for loss of the cortisol signal. If this is true, then the law of averages would tend to protect the cortisol content of pooled samples more than that of individual samples, thus explaining the greater correlation between pooled versus individual samples across the 2 testing methods in our study.
Our studies on hair cortisol methods have both advantages and limitations. One advantage is that single extractions using methanol for an overnight incubation may be insufficient to capture all the available cortisol in hair samples, with different assays detecting between 40% and 65% cortisol under these conditions. A second advantage is that prewashing the hair sample with alcohol has little to marginal effect on hair cortisol content, thus eliminating an unnecessary extraction step. Other investigators reported that cortisol arising from sweat or cortisol solutions is rapidly absorbed into the hair shaft. Therefore, hair samples should not be collected from children just after strenuous activity, when the release of exercise-induced cortisol and sweat may affect hair cortisol values. Finally, another advantage of this study is that the comparison of standard versus milled methods included 9 African Americans and 7 whites, whereas the comparison of ELISA versus LC-MS methods included 6 African Americans and 7 whites, thus accounting for racially dependent variations in hair type in our methods.

One limitation in the ELISA-based assay has a known cross-reactivity of the antibody with progesterone (7.2%) and cortisone (6.2%). However, our hair samples came from children at 1–4 years of age, who were unlikely to have significant progesterone levels and thus would have minimal cross-reactivity at this age. Another limitation is that some of the hair cortisol can be converted to cortisone. The enzyme 11β-hydroxysteroid dehydrogenase (11β-HSD) metabolizes cortisol to cortisone and vice versa. The 11β-HSD1 isoform converts to cortisol, whereas 11β-HSD2 isoform converts cortisol to cortisone. The 11β-HSD1 isoform is expressed in keratinocytes, dermal mesenchymal cells, and outer root sheath follicles while expression of the 11β-HSD2 gene remains at the background level according to 1 report, although it is detectable at the protein level according to another. Thus, interconversion of cortisol to cortisone possibly occurs in the skin. It is unlikely, however, that this conversion occurs in the cortisol bound to hair, because the hair shaft is a nonviable structure produced by the hair follicle. Furthermore, the LC-MS analyses of our individual and pooled hair samples showed relatively low concentrations of cortisone (on average, cortisone comprised of 12% (median 13.4%) of the total steroids detected). If 6.2% of this cortisone cross-reacts with the cortisol antibody in the ELISA assay, then the measured cortisol levels would be increased by <1% because of cortisone cross-reactivity in the cortisol ELISA assay, which can be considered minimal.

CONCLUSIONS

Further refinements in the methods used for hair cortisol analysis may be required before the data reported in the clinical literature can be considered precise enough for clinical decision making, or for establishing reference ranges for different age groups. These analyses will be useful for examining early hypothalamic-pituitary-adrenal axis development or function, or for determining the long-term effects of chronic stress during early childhood in life-course studies. We propose methods that include finely cutting the hair for processing samples, a 4-step extraction procedure to maximize the amount of cortisol extracted, and using ELISA-based assays developed specifically for human hair. These and other methodological improvements would allow hair cortisol levels to be a reliable and reproducible measure of chronic stress in childhood.

ACKNOWLEDGMENTS

The authors gratefully thank the commitment of the study participants and staff of the CANDLE Study; funding from The Urban Child Institute, Memphis TN, to support the collection of hair samples analyzed in this study; the Principal Investigator for the CANDLE Study (Francis Tylavsky, PhD) and investigators at the University of Tennessee Health Science Center associated with designing and implementing the CANDLE study (Fred Palmer, MD, Laura D. Murphy, EdD, Carolyn Graff, PhD, Marion Hare, MD, Pamela Connor, PhD, Grant Somes, PhD, Owen Phillips, MD).

REFERENCES